[Calculus] 6. Exponential and Logarithm
Lemma 6.1 Let \(m\in\N\). For every \(a\in[0,\infty)\), there exists a unique \(c\in[0,\infty)\), such that \(c^m=a\).
Proof (Uniqueness)
Consider a map \(f:[0,\infty)\to [0,\infty)(\sube\R)\), from \(x\) to \(x^m\). It is needed to show the map is injective.
Given two \(x_1\ne x_2\in[0,\infty)\). Then \(\frac{x_1}{x_2}\ne1\), i.e., \(\left(\frac{x_1}{x_2}\right)^m\ne1\), thus \(x_1^m\ne x_2^m\).
(Existence)
Case 1, \(a=0\), then we can find \(c=0\).
Case 2, \(a>0\). Since the map \(f:x\mapsto x^m\) is continuous. (Since \(f(x)=x\) is continuous, the products by itself is also continous.)
\(f(0) = 0 < a\). On the other hand, \(f(a+1)=(a+1)^m > a\).
By the intermediate value theorem, \(\exists c\in(0,a+1)[f(c)=c^m=a]\). □
Definition 6.2 For any \(c\ge0\), we define \(a^{\frac{1}{m}}\) to be such a number \(c\). In other words, \(c=a^{\frac{1}{m}} \Lrarr c^m=a\land c\ge0\).
More generally, for any \(r\in\Q\), we define \(a^r\) to be \((a^n)^m\) if \(r=\frac{n}{m}\) for some \(n\in\Z,m\in\N\).
Proposition 6.3 Let \(a>0\) and \(r_1,r_2\in\Q\).
\(a^{r_1}a^{r_2}=a^{r_1+r_2}\), \((a^{r_1})^{r_2}=a^{r_1r_2}\). \(r_1 < r_2, a > 1 \Rarr a^{r_1} < a^{r_2}\). If \(a<1\), then \(a^{r_1}>a^{r_2}\). \(\lim_{n\to\infty}a^{\frac{1}{n}}=1\).
Proof Let \(r_1=n_1/m_1, r_2=n_2/m_2\), where \(n_1,n_2\in\Z, m_1,m_2\in\N\).
(1.1) By def, there exist two numbers \(b_1,b_2\), such that \(b_1^{m_1}=a^{n_1},b_2^{m_2}=a^{n_2}\).
Therefore,
\[ (b_1b_2)^{m_1m_2}= (b_1^{m_1})^{m_2}(b_2^{m_2})^{m_1}= a^{n_1m_2}a^{n_2m_1}= a^{n_1m_2+n_2m_1} \]
i.e.,
\[ b_1b_2=\left(a^{n_1m_2+n_2m_1}\right)^{\frac{1}{m_1m_2}} = a^{\frac{n_1}{m_1}+\frac{n_2}{m_2}} = a^{r_1+r_2} \]
And \(b_1b_2\) is actually \(a^{r_1}a^{r_2}\).
(1.2) By def, there exist two number \(b_1,b_2\), such that \(b_1^{m_1}=a^{n_1}\) and \(b_2^{m_2}=b_1^{n_2}\).
Therefore,
\[ b_2^{m_1m_2}= (b_2^{m_2})^{m_1}= b_1^{n_2m_1}= a^{n_1n_2} \]
i.e., \(b_2=a^{r_1r_2}\).
And, \(b_2=b_1^{r_2}=(a^{r_1})^{r_2}\), then the proof is done.
(2)
\[ \frac{a^{r_1}}{a^{r_2}}= a^{r_1-r_2}= \left(\frac{1}{a}\right)^{r_2-r_1} \]
since \(r_1< r _2\), then \(r_2-r_1 > 0\). And
\[ \left(\frac{1}{a}\right)^{r_2-r_1} < 1^{r_2-r_1}=1 \]
Thus, \(a^{r_1} < a^{r_2}\).
(3) Suppose \(a>1\), then \(a^{\frac{1}{n}}>1\).
Let \(a=1+e\) for some positive \(e\in\R\).
Then \(a=(1+e)^n > C_n^0y^0 + C_n^1y^1=1+ny\), by binomial theorem.
Therefore, \(0 < y < \frac{a-1}{n}\).
And \(\lim_{n\to\infty}\frac{a-1}{n}=0\), by Squeeze Test, \(\lim_{n\to\infty}y=0\).
Thus, \(\lim_{n\to\infty}a^{\frac{1}{n}}=1\).
Similarly when \(a<1\). □
Definition 6.4 Choose a sequence \(r_n(n\in\N)\), such that \(r_n\in\Q\) for all \(n\), and \(\lim_{n\to\infty}r_n=x\), and then define \(a^x:=\lim_{n\to\infty}a^{r_n}\) if the limit exists.
However, we need to show the above definition is well-defined. There are some probloms needed to be fixed:
Does \(a^{r_n}(n\in\N)\) converge? The result is relevant to the sequence we choose?
Proof
(1) The goal also means showing \(a^{r_n}\) is a Cauchy sequence.
Consider this
\[ \vert a^{r_n}-a^{r_m} | = a^{r_m}|a^{r_n-r_m}-1| \]
Since \(r_n\) is convergent, then it is bounded, i.e., \(\exists M_1,M_2\in\Z\forall n\in\N[M_1 \le r_n \le M_2]\).
Thus, \(a^{r_m}\le\max\{a^{M_1},a^{M_2}\}=: M(>0)\) for all \(n\in\N\).
And we have \(\lim_{n\to\infty}a^{\frac{1}{n}}=1\), i.e., \(\forall\epsilon>0\exists N\in\N[k\ge N \Rarr \left|a^{\frac{1}{k}}-1\right|<\epsilon]\).
Choose the restriction to be \(\frac{\epsilon}{M}\).
Since \(\{r_n\}\) converges, it is a Cauchy sequence, i.e., when \(n,m\) reach big enough, then \(r_n-r_m\) will be small enough, so that \(r_n-r_m<\frac{1}{k}\).
Then we have \(a^{r_n-r_m} < a^{\frac{1}{k}} < 1+\frac{\epsilon}{M}\). Similarly, we can obtain \(1-\frac{\epsilon}{M} < a^{\frac{1}{k}} < a^{r_n-r_m}\). (by Archimedean property?)
Therefore, we have:
\[ \vert a^{r_n}-a^{r_m}| = a^{r_m}|a^{r_n-r_m}-1| < M\cdot\frac{\epsilon}{M}=\epsilon \]
In other words, \(\{a^{r_n}\}\) is Cauchy, then convergent.
(2) Goal: If there is another sequence \(r_n'\) is also convergent to \(x\), then \(\lim_{n\to\infty}a^{r_n'}=\lim_{n\to\infty}a^{r_n}\).
\[ \lim{n\to\infty}a^{r_n-r_n'}=1 \] □
Proposition 6.5
Given \(a>0\),
- For \(x_1,x_2\in\R\), then \(a^{x_1}a^{x_2}=a^{x_1+x_2}\), and \((a^{x_1})^{x_2}=a^{x_1x_2}\).
- If \(x_1 < x_2\), then \(a^{x_1} < a^{x_2}\) when \(a>1\), vice versa for \(a < 1\).
- \(f:x\mapsto a^x\) is a continuous map.
- \(\lim_{x\to0}a^x=1\).
Proof
Suppose there are two sequences \(b_n,c_n(\in\Q)\), such that \(\lim_{n\to\infty}b_n=x_1\) and \(\lim_{n\to\infty}c_n=x_2\) where \(x_1,x_2\in\R\).
(1.1) \(\lim_{n\to\infty}(a_n+b_n)=x_1+x_2\).
Since \(\lim_{n\to\infty}a^{b_n}=a^{x_1},\lim_{n\to\infty}a^{c_n}=a^{x_2}\), we have
\[ a^{x_1}a^{x_2}=\lim_{n\to\infty}(a^{b_n}a^{c_n})= \lim_{n\to\infty}a^{b_n+c_n}=a^{x_1+x_2} \]
(1.2) Choose \(x_n,y_n\in\Q\), specially \(x_n\) grows non-decreasingly to \(x\) as \(n\to\infty\), so as \(y_n\).
Without loss of generality, supppose \(a>1, x,y>0\).
\(a^x \ge a^{x_n} > 1\), then \((a^x)^y \ge (a^{x_n})^{y_n}\).
By the law of exponentials of rationals, \((a^{x_n})^{y_n} = a^{x_ny_n}\) which converges to \(a^{xy}\) non-decreasingly.
Therefore, \((a^x)^y \ge a^{xy}\), too.
Choose another \(x_y,y_n\), which grows non-increasingly to \(x,y\). After the same operations, we obtain \((a^x)^y \le a^{xy}\).
Thus, \((a^x)^y = a^{xy}\).
(2)
\[ \frac{a^{x_1}}{a^{x_2}}=a^{x_1-x_2} \]
Since \(x_1 - x_2 < 0\) and \(a>1\), \(a^{x_1-x_2}<1\). Vice versa.
(3)
Our goal is to show that for any \(x_0\in\R\), we have \(\lim_{x\to x_0}a^x = a^{x_0}\).
We already have \(\lim_{n\to\infty}a^{\frac{1}{n}}=1\), and also \(\lim_{n\to\infty}a^{\frac{-1}{n}}=1\).
Which means that for any positive \(\epsilon\), there exists an \(N\in\N\), such that
\[ 1-\epsilon < a^{\frac{\pm1}{n}} < 1 + \epsilon \]
for all \(n\ge N\). It specially holds when \(n=N\).
Let \(\delta = \frac{1}{N}\). Then when \(|x-x_0| < \delta\), i.e., \(\frac{-1}{N} < x - x_0 < \frac{1}{N}\).
By monotonicity of exponentials, we have \(1-\epsilon < a^{\frac{-1}{N}} < a^{x-x_0} < a^{\frac{1}{N}} < 1 + \epsilon\).
Then
\[ \vert a^x - a^{x_0}| = a^{x_0} | a^{x-x_0} - 1 | < a^{x_0} \epsilon \]
What we need to do is choose the first positive number to be \(\frac{\epsilon}{a^{x_0}}\).
(4)
By (3), \(a^x\) is continuous, then \(\lim_{x\to0}a^x = a^0 = 1\). □
Proposition 6.6 \(f(x)=a^x\) is a bijection if \(a>0\) and \(a\ne1\). The inverse map \(\log_a:(0,\infty)\to\R\) of exponential functions is also continuous.
Proof
(1)
(Injective) Proved by the monotonicity of exponentials
(Surjective)
For any real number \(r\), there must exist two \(x_1,x_2\in\R\) such that \(a^{x_1} < r < a^{x_2}\). It is easy to see the contradiction if no such kind of \(x_1,x_2\).
Then by intermediate value theorem, there exists a \(c\in(x_1,x_2)\), such that \(a^c=r\). And hence the map is surjective.
(2)
For \(x,x_0\in(0,\infty)\), let \(y=\log_ax, y_0=\log_ax_0\) which are both in \(\R\).
Considering \(|y-y_0| < \epsilon\) for any given \(\epsilon>0\), we have \(y < y_0+\epsilon\), with assuming \(a > 1\):
\[j a^y < a^{y_0+\epsilon}\\ a^y-a^{y_0} < a^{y_0}(a^\epsilon-1)\\ x-x_0 < \delta $$
for some \(\delta >0\).
Basically, for any \(\epsilon > 0\), there exists a \(\delta > 0\), such that if \(x - x_0 < \delta\) we have \(|y - y_0 = \log_a x - \log_a x_0| < \epsilon\), i.e. \(\lim_{x\to x_0} \log_a x = \log_a x_0\). □
Proposition 6.7 Let \(a>0\), and for any \(b,c>0\).
- \(\log_a(bc) = \log_ab + \log_ac\)
- \(\log_ac = \log_ab \cdot \log_bc\) if \(b\ne1\)
- If \(a>1\), then \(\log_ab>\log_ac\), vice versa for $0
Proof (1)
\[ a^{\log_a(bc)}=a^{\log_ab+\log_ac}\\ bc=a^{\log_ab}\cdot a^{\log_ac}=bc \]
(2) and (3) are both similar with (1) □
Proposition 6.8 \(\lim_{x\to\infty}\left(1+\frac{1}{x}\right)^x = \lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n\) where \(x\in\R\) and \(n\in\N\).
And we call this limit as a number \(e\), Euler's number.
Proof We already know that \(\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e\), which means for any \(\forall \epsilon > 0\), there exists an \(N\in\N\), such that when the index \(n\) is greater than \(N\), we always have \(e - \epsilon < \left(1+\frac{1}{n}\right)^n < e + \epsilon\).
Let \(f(x) = \left(1+\frac{1}{x}\right)^x\), and \(F(n) = \left(1+\frac{1}{n}\right)^n\).
Firstly, we restrict \(x\) to be greater than \(n\) for some \(n\ge N\), i.e., \(n < x\).
We claim that \(F(n) < f(x)\).
Were this false, we have \(\left(1+\frac{1}{n}\right)^n \ge \left(1+\frac{1}{x}\right)^x\).
We choose \(x=2n\), then
\begin{align*} \left(1+\frac{1}{n}\right)^n $\ge \left(1+\frac{1}{x}\right)^x\\ &\ge \left(1+\frac{1}{2n}\right)^{2n}\\ \left(\frac{2n(n+1)}{n(2n+1)}\right)^n &\ge \left(1+\frac{1}{n}\right)^n \end{align*}It is obvious that the numbers inside parenthesis are both greater than 1, then by monotonicity, we have
\begin{align*} \frac{2(n+1)}{2n+1} &\ge \frac{2n+1}{2n}\\ 0 &\ge 1 \end{align*}This induces a contradiction. Therefore \(F(n) < f(x)\), then \(e - \epsilon < F(n) < f(x)\).
Secondly, by Archimedean Property, we can find a natural number \(m\), such that $x
We claim that \(f(x) < F(m)\).
Since \(m\) is even, there exists a \(k\in\N\) such that \(2k=m\). We can let \(m\) to be big enough so that \(x\) can become \(k\).
Were the claim false, we have
\begin{align*} \left(1+\frac{1}{x}\right)^x &\ge \left(1+\frac{1}{m}\right)^m \\ \left(1+\frac{1}{k}\right)^k &\ge \left(1+\frac{1}{2k}\right)^{2k} \end{align*}Similar as before, we can obtain a contradiction if we keep on deducing.
Therefore, \(f(x) < F(m) < e + \epsilon\).
So with all that, for any \(\epsilon > 0\), there exist \(N\in\N\) and \(n,m\in\N\) with \(N < n < m\), such that when $n
\[ \lim_{x\to\infty}\left(1+\frac{1}{x}\right)^x = e = \lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n \] □
Proposition 6.9 \(\lim_{x\to0}\frac{a^x - 1}{x} = \log_e a =: lna\) if \(a>0\).
Proof Proof is divided into two parts.
(1) Consider the left limit.
Let \(t=a^x - 1\), then \(x = \log_a(1+x)\). Then
\begin{align*} \lim_{x\to0^+}\frac{a^x - 1}{x} &= \lim{t\to\infty}\frac{t}{\log_a(1+t)}\\ &=\lim{t\to\infty}\frac{1}{\log_a(1+t)^{\frac{1}{t}}}\\ &=\frac{1}{\log_ae} &=\ln a \end{align*}(2) Consider the right limit.
\[ \lim_{x\to0^-}\frac{a^x - 1}{x} = \lim_{x\to0^-}a^x\frac{a^{-x} - 1}{-x} \]
Let \(t = -x\), then the above limit becomes \(\lim_{t\to0^+}a^{-t}\frac{a^t - 1}{t}\).
The former term is 0 as \(t\to0^+\) since \(a^x\) is continuous, and the later term is \(\ln e\) by (1).
Therefore, we have the left limit and right limit, with equal quantity \(\ln a\), then the limit is \(\ln a\). □